The `iloc` Property
The iloc
property in Pandas allows us to access specific parts of a DataFrame using numerical positions.
You can use iloc
to access:
- A single element;
- A single row;
- A single column;
- A range of rows;
- A range of columns;
- A range of rows and columns.
General Syntax
DataFrame.iloc[row_position, column_position]
You can also slice:
DataFrame.iloc[start_row:end_row, start_col:end_col]
Example
12345678910111213141516171819202122232425import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
Var alt klart?
Tak for dine kommentarer!
Sektion 3. Kapitel 10
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Suggested prompts:
Spørg mig spørgsmål om dette emne
Opsummér dette kapitel
Vis virkelige eksempler
Awesome!
Completion rate improved to 2.7
The `iloc` Property
Stryg for at vise menuen
The iloc
property in Pandas allows us to access specific parts of a DataFrame using numerical positions.
You can use iloc
to access:
- A single element;
- A single row;
- A single column;
- A range of rows;
- A range of columns;
- A range of rows and columns.
General Syntax
DataFrame.iloc[row_position, column_position]
You can also slice:
DataFrame.iloc[start_row:end_row, start_col:end_col]
Example
12345678910111213141516171819202122232425import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
Var alt klart?
Tak for dine kommentarer!
Sektion 3. Kapitel 10