Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Explore Dataset | Model Building
Principal Component Analysis
course content

Kursusindhold

Principal Component Analysis

Principal Component Analysis

1. What is Principal Component Analysis
2. Basic Concepts of PCA
3. Model Building
4. Results Analysis

book
Explore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

python

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

python

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

python

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

python
Opgave

Swipe to start coding

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 2
toggle bottom row

book
Explore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

python

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

python

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

python

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

python
Opgave

Swipe to start coding

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 2
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt