Introductions to Partial Derivatives
Partial derivatives measure how functions change with respect to one variable alone. To do this in practice, you're treating one variable as a constant, deriving only one variable at a time.
What Are Partial Derivatives?
A partial derivative is written using the symbol ∂ instead of d for regular derivatives. If a function f(x,y) depends on both x and y, we compute:
∂x∂fh→0limhf(x+h,y)−f(x,y)∂y∂fh→0limhf(x,y+h)−f(x,y)When differentiating with respect to one variable, treat all other variables as constants.
Computing Partial Derivatives
Consider the function:
f(x,y)=x2y+3y2Let's find, ∂x∂f:
∂x∂f=2xy- Differentiate with respect to x, treating y as a constant.
Let's compute, ∂y∂f:
∂y∂f=x2+6y- Differentiate with respect to y, treating x as a constant.
Tak for dine kommentarer!
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 1.89
Introductions to Partial Derivatives
Stryg for at vise menuen
Partial derivatives measure how functions change with respect to one variable alone. To do this in practice, you're treating one variable as a constant, deriving only one variable at a time.
What Are Partial Derivatives?
A partial derivative is written using the symbol ∂ instead of d for regular derivatives. If a function f(x,y) depends on both x and y, we compute:
∂x∂fh→0limhf(x+h,y)−f(x,y)∂y∂fh→0limhf(x,y+h)−f(x,y)When differentiating with respect to one variable, treat all other variables as constants.
Computing Partial Derivatives
Consider the function:
f(x,y)=x2y+3y2Let's find, ∂x∂f:
∂x∂f=2xy- Differentiate with respect to x, treating y as a constant.
Let's compute, ∂y∂f:
∂y∂f=x2+6y- Differentiate with respect to y, treating x as a constant.
Tak for dine kommentarer!