Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Implementing Rational Functions in Python | Functions and Their Properties
Mathematics for Data Science

bookImplementing Rational Functions in Python

Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.

1. Defining the Function

We define our rational function as:

def rational_function(x):
    return 1 / (x - 1)

Key Considerations:

  • x=1x = 1 must be excluded from calculations to avoid division by zero;
  • The function will be split into two domains (left and right of x=1x = 1).

2. Splitting the Domain

To avoid division by zero, we generate two separate sets of x-values:

x_left = np.linspace(-4, 0.99, 250)  # Left of x = 1
x_right = np.linspace(1.01, 4, 250)  # Right of x = 1

The values 0.99 and 1.01 ensure we never include x=1x = 1, preventing errors.

3. Plotting the Function

plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)

The function jumps at x=1x = 1, so we need to plot it in two pieces.

4. Marking Asymptotes and Intercepts

  • Vertical Asymptote (x=1x = 1):
def rational_function(x):
    return 1 / (x - 1)
  • Horizontal Asymptote (y=0y = 0):
plt.axhline(0, color='green', linestyle='--', 
            linewidth=1, label="Horizontal Asymptote (y=0)")
  • Y-Intercept at x=0x = 0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")

5. Adding Directional Arrows

To indicate the function extends infinitely:

plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))

1. How do you define a rational function in Python that avoids division by zero?

2. What does the following code do?

3. How do we visualize a vertical asymptote in matplotlib?

question mark

How do you define a rational function in Python that avoids division by zero?

Select the correct answer

question mark

What does the following code do?

Select the correct answer

question mark

How do we visualize a vertical asymptote in matplotlib?

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain why we need to split the domain for rational functions?

How do I identify vertical and horizontal asymptotes in a rational function?

What does the code do to avoid division by zero errors?

Awesome!

Completion rate improved to 1.89

bookImplementing Rational Functions in Python

Stryg for at vise menuen

Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.

1. Defining the Function

We define our rational function as:

def rational_function(x):
    return 1 / (x - 1)

Key Considerations:

  • x=1x = 1 must be excluded from calculations to avoid division by zero;
  • The function will be split into two domains (left and right of x=1x = 1).

2. Splitting the Domain

To avoid division by zero, we generate two separate sets of x-values:

x_left = np.linspace(-4, 0.99, 250)  # Left of x = 1
x_right = np.linspace(1.01, 4, 250)  # Right of x = 1

The values 0.99 and 1.01 ensure we never include x=1x = 1, preventing errors.

3. Plotting the Function

plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)

The function jumps at x=1x = 1, so we need to plot it in two pieces.

4. Marking Asymptotes and Intercepts

  • Vertical Asymptote (x=1x = 1):
def rational_function(x):
    return 1 / (x - 1)
  • Horizontal Asymptote (y=0y = 0):
plt.axhline(0, color='green', linestyle='--', 
            linewidth=1, label="Horizontal Asymptote (y=0)")
  • Y-Intercept at x=0x = 0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")

5. Adding Directional Arrows

To indicate the function extends infinitely:

plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))

1. How do you define a rational function in Python that avoids division by zero?

2. What does the following code do?

3. How do we visualize a vertical asymptote in matplotlib?

question mark

How do you define a rational function in Python that avoids division by zero?

Select the correct answer

question mark

What does the following code do?

Select the correct answer

question mark

How do we visualize a vertical asymptote in matplotlib?

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6
some-alt