Logical Indexing
Logical indexing allows you to filter rows of a data frame based on conditions. Instead of remembering row numbers, you specify logical expressions, and only rows where the condition is TRUE are returned.
Example
123456789name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") test <- data.frame(name, age, gender) # People older than 30 test[test$age > 30, ] # Males only test[test$gender == 'M', ]
The condition should be placed in the row index position inside square brackets ([condition, ]).
Swipe to start coding
Using the mtcars dataset, extract the following data:
- The cars that pass a quarter-mile in less than 16 seconds (
qseccolumn). - Cars with 6 cylinders (
cylcolumn).
Løsning
Tak for dine kommentarer!
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Fantastisk!
Completion rate forbedret til 2.27
Logical Indexing
Stryg for at vise menuen
Logical indexing allows you to filter rows of a data frame based on conditions. Instead of remembering row numbers, you specify logical expressions, and only rows where the condition is TRUE are returned.
Example
123456789name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") test <- data.frame(name, age, gender) # People older than 30 test[test$age > 30, ] # Males only test[test$gender == 'M', ]
The condition should be placed in the row index position inside square brackets ([condition, ]).
Swipe to start coding
Using the mtcars dataset, extract the following data:
- The cars that pass a quarter-mile in less than 16 seconds (
qseccolumn). - Cars with 6 cylinders (
cylcolumn).
Løsning
Tak for dine kommentarer!
single