Exploring Data [3/3]
Summary of DataFrame' columns
If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
Numerical columns' summary
For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
Tak for dine kommentarer!
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 3.33
Exploring Data [3/3]
Stryg for at vise menuen
Summary of DataFrame' columns
If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
Numerical columns' summary
For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
Tak for dine kommentarer!