Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Problem A. Binomial Coefficient | Solutions
Dynamic Programming

bookProblem A. Binomial Coefficient

Let's use the Memoization principle here. Let dp[i][j] be a Binomial Coefficient C(i,j). First, dp initialized with None.

Given dp[n][k]:

  • if it is None, calculate it as c(n-1, k-1) + c(n-1, k)
  • if it is a base case: k==0 or k==n, then dp[n][k] = 1
  • else return dp[n][k]

Note that structure dp depends on n, and you must use it for defined n.

123456789101112131415
n = 200 dp = [[None for _ in range(n+1)] for _ in range(n+1)] def c(n, k): if k==0 or k==n: dp[n][k] = 1 if dp[n][k] == None: dp[n][k] = c(n-1, k)+c(n-1, k-1) return dp[n][k] print(c(3, 2)) print(c(10, 4)) print(c(11, 5)) print(c(144, 7))
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 1
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Opsummér dette kapitel

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 8.33

bookProblem A. Binomial Coefficient

Stryg for at vise menuen

Let's use the Memoization principle here. Let dp[i][j] be a Binomial Coefficient C(i,j). First, dp initialized with None.

Given dp[n][k]:

  • if it is None, calculate it as c(n-1, k-1) + c(n-1, k)
  • if it is a base case: k==0 or k==n, then dp[n][k] = 1
  • else return dp[n][k]

Note that structure dp depends on n, and you must use it for defined n.

123456789101112131415
n = 200 dp = [[None for _ in range(n+1)] for _ in range(n+1)] def c(n, k): if k==0 or k==n: dp[n][k] = 1 if dp[n][k] == None: dp[n][k] = c(n-1, k)+c(n-1, k-1) return dp[n][k] print(c(3, 2)) print(c(10, 4)) print(c(11, 5)) print(c(144, 7))
copy

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 8.33
Sektion 3. Kapitel 1
single

single

some-alt