Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Problem C. Minimum Path in Triangle | Solutions
Dynamic Programming

bookProblem C. Minimum Path in Triangle

The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle and update values in the cells:

  • triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]: thats how you can reach cell [i, j]` with min cost
  • triangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1] : extreme cases (number of columns in each row is equal to number of row).

After updating, choose the minimum path cost, which is in the last row.

1234567891011121314151617181920
def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 8.33

bookProblem C. Minimum Path in Triangle

Stryg for at vise menuen

The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle and update values in the cells:

  • triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]: thats how you can reach cell [i, j]` with min cost
  • triangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1] : extreme cases (number of columns in each row is equal to number of row).

After updating, choose the minimum path cost, which is in the last row.

1234567891011121314151617181920
def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
copy

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 8.33
Sektion 3. Kapitel 3
single

single

some-alt