Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Poisson Distribution 3/3 | Distributions
Probability Theory Update

bookPoisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Opsummér dette kapitel

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 3.7

bookPoisson Distribution 3/3

Stryg for at vise menuen

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 3
single

single

some-alt