Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Standard Normal Distribution (Gaussian distribution) 1/2 | Distributions
Probability Theory Update

bookStandard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.
  • The standard deviation to 1.
  • The shape is bell-curved.
  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 4
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Opsummér dette kapitel

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 3.7

bookStandard Normal Distribution (Gaussian distribution) 1/2

Stryg for at vise menuen

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.
  • The standard deviation to 1.
  • The shape is bell-curved.
  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 3.7
Sektion 5. Kapitel 4
single

single

some-alt