Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære MaxAbsScaler | Scaling Numerical Data
Introduction to Scikit Learn

bookMaxAbsScaler

To bring values into range [-1, 1] we have to use the next formula:

Here we have the following values:

  • x_scaled - normalized feature element,
  • x - unnormalized feature element,
  • max(x) -- maximum feature element.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

1
from sklearn.preprocessing import MaxAbsScaler
copy

Let's look at an example of how we apply this normalization to a very simple array.

12345678910
from sklearn.preprocessing import MaxAbsScaler data = [[10, 5, -6],[11, -9, 4],[-10, 0, 1]] # Normalizer initialization scaler = MaxAbsScaler() # Dataset transfer and transformation scaler.fit(data) scaled_data = scaler.transform(data) print('Data before normalization', data) print('Data after normalization', scaled_data)
copy

If you run this code you will get two different arrays: before and after normalization. And this function really works, because you can make sure that data after using MaxAbsScaler() function really lie within an interval [-1, 1]. Look below.v

It's time to practice!

Opgave

Swipe to start coding

You have a numpy array. Please, normalize this array into range [-1, 1].

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Opsummér dette kapitel

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 12.5

bookMaxAbsScaler

Stryg for at vise menuen

To bring values into range [-1, 1] we have to use the next formula:

Here we have the following values:

  • x_scaled - normalized feature element,
  • x - unnormalized feature element,
  • max(x) -- maximum feature element.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

1
from sklearn.preprocessing import MaxAbsScaler
copy

Let's look at an example of how we apply this normalization to a very simple array.

12345678910
from sklearn.preprocessing import MaxAbsScaler data = [[10, 5, -6],[11, -9, 4],[-10, 0, 1]] # Normalizer initialization scaler = MaxAbsScaler() # Dataset transfer and transformation scaler.fit(data) scaled_data = scaler.transform(data) print('Data before normalization', data) print('Data after normalization', scaled_data)
copy

If you run this code you will get two different arrays: before and after normalization. And this function really works, because you can make sure that data after using MaxAbsScaler() function really lie within an interval [-1, 1]. Look below.v

It's time to practice!

Opgave

Swipe to start coding

You have a numpy array. Please, normalize this array into range [-1, 1].

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 12.5
Sektion 2. Kapitel 2
single

single

some-alt