Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære SimpleImputer | The Very First Steps
Introduction to Scikit Learn

Stryg for at vise menuen

book
SimpleImputer

We figured out the identification of missing values. Time now to find out what to do with them and how.

SimpleImputer - it is a class from the scikit-learn library, and which is used to work with the missing values.

SimpleImputer(). This method replaces the missing values with more logical values. It has such main arguments, let's look at them.

  • missing_values - a way to represent missing values, by default is NaN, but as we have already said, it can be for example 0.

  • strategy - here we indicate which values we will replace with. It can be mean(default), median, most_frequent and constant.

  • fill_value - a constant value, with which we will replace the missing values, if we chose strategy = constant.

We learn fit() and transform() functions a little more later.

Opgave

Swipe to start coding

Let's try to fill the empty space in your small dataset.To use SimpleImputer you have to implement the next steps:

  1. Import the class.
  2. Create an instance of the class (imputer object).
  3. Specify the parameters you need, especially: we see that here the missing values are represented by NaN, so replace them with the constant value 15.
  4. Fit the imputer on your data using fit() function
  5. Impute all missing values in you data using transform() function.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 2
Vi beklager, at noget gik galt. Hvad skete der?

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
SimpleImputer

We figured out the identification of missing values. Time now to find out what to do with them and how.

SimpleImputer - it is a class from the scikit-learn library, and which is used to work with the missing values.

SimpleImputer(). This method replaces the missing values with more logical values. It has such main arguments, let's look at them.

  • missing_values - a way to represent missing values, by default is NaN, but as we have already said, it can be for example 0.

  • strategy - here we indicate which values we will replace with. It can be mean(default), median, most_frequent and constant.

  • fill_value - a constant value, with which we will replace the missing values, if we chose strategy = constant.

We learn fit() and transform() functions a little more later.

Opgave

Swipe to start coding

Let's try to fill the empty space in your small dataset.To use SimpleImputer you have to implement the next steps:

  1. Import the class.
  2. Create an instance of the class (imputer object).
  3. Specify the parameters you need, especially: we see that here the missing values are represented by NaN, so replace them with the constant value 15.
  4. Fit the imputer on your data using fit() function
  5. Impute all missing values in you data using transform() function.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 2
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt