Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Arrays Operations | Introduction to NumPy
Introduction to Data Analysis in Python

bookArrays Operations

NumPy arrays not only perform faster, but also support different operations, that are not available for built-in lists.

For example, you can add/subtract/multiply/divide by a certain number all the array elements. Or you can multiply two arrays element-by-element.

123456789
# Import the library import numpy as np # Creating two arrays arr1 = np.array([1, 2, 3]) arr2 = np.array([10, 20, 30]) # Perform some arrays operations print(arr1 + 3) print(arr1 * arr2)
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 3

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Awesome!

Completion rate improved to 2.7

bookArrays Operations

Stryg for at vise menuen

NumPy arrays not only perform faster, but also support different operations, that are not available for built-in lists.

For example, you can add/subtract/multiply/divide by a certain number all the array elements. Or you can multiply two arrays element-by-element.

123456789
# Import the library import numpy as np # Creating two arrays arr1 = np.array([1, 2, 3]) arr2 = np.array([10, 20, 30]) # Perform some arrays operations print(arr1 + 3) print(arr1 * arr2)
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 3
some-alt