Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Implementing K-Means Clustering | K-Means
Cluster Analysis

Stryg for at vise menuen

book
Challenge: Implementing K-Means Clustering

Opgave

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a K-means model with 3 clusters, set random_state to 42, n_init to 'auto' and store it in the kmeans variable.
  • Fit the model on the dataset, predict the cluster labels, and store the result in the labels variable.
  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 7

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Challenge: Implementing K-Means Clustering

Opgave

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a K-means model with 3 clusters, set random_state to 42, n_init to 'auto' and store it in the kmeans variable.
  • Fit the model on the dataset, predict the cluster labels, and store the result in the labels variable.
  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 7
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt