Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Implementing Gaussian Mixture Models | GMMs
Cluster Analysis

Stryg for at vise menuen

book
Challenge: Implementing Gaussian Mixture Models

Opgave

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a Gaussian mixture model with 3 clusters, set random_state to 42, and store it in the gmm variable.

  • Fit the model on the dataset, predict the cluster labels and store the result in the labels variable.

  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 6. Kapitel 6
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 2.94

book
Challenge: Implementing Gaussian Mixture Models

Opgave

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a Gaussian mixture model with 3 clusters, set random_state to 42, and store it in the gmm variable.

  • Fit the model on the dataset, predict the cluster labels and store the result in the labels variable.

  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 2.94

Stryg for at vise menuen

some-alt