Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Implementing on Real Dataset | DBSCAN
Cluster Analysis
course content

Kursusindhold

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 5

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

course content

Kursusindhold

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 5
Vi beklager, at noget gik galt. Hvad skete der?
some-alt