Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Using DBSCAN Clustering to Detect Outliers | Machine Learning Techniques
Data Anomaly Detection

bookChallenge: Using DBSCAN Clustering to Detect Outliers

Opgave

Swipe to start coding

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 2
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Opsummér dette kapitel

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 6.67

bookChallenge: Using DBSCAN Clustering to Detect Outliers

Stryg for at vise menuen

Opgave

Swipe to start coding

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 2
single

single

some-alt