Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Solving Task Using Regularisation | Machine Learning Techniques
Data Anomaly Detection
course content

Kursusindhold

Data Anomaly Detection

Data Anomaly Detection

1. What is Anomaly Detection?
2. Statistical Methods in Anomaly Detection
3. Machine Learning Techniques

book
Challenge: Solving Task Using Regularisation

Opgave

Swipe to start coding

Your task is to create a classification model using L2 regularization on the breast_cancer dataset. It contains features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The task associated with this dataset is to classify the breast mass as malignant (cancerous) or benign (non-cancerous) based on the extracted features.

Your task is to:

  1. Specify argument at the LogisticRegression() constructor:
    • specify penalty argument equal to l2;
    • specify C argument equal to 1.
  2. Fit regularized model on the training data.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
toggle bottom row

book
Challenge: Solving Task Using Regularisation

Opgave

Swipe to start coding

Your task is to create a classification model using L2 regularization on the breast_cancer dataset. It contains features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The task associated with this dataset is to classify the breast mass as malignant (cancerous) or benign (non-cancerous) based on the extracted features.

Your task is to:

  1. Specify argument at the LogisticRegression() constructor:
    • specify penalty argument equal to l2;
    • specify C argument equal to 1.
  2. Fit regularized model on the training data.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt