Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Autoencoder Implementation | VAE implementation
Image Synthesis Through Generative Networks

bookAutoencoder Implementation

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 3

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Spørg mig spørgsmål om dette emne

Opsummér dette kapitel

Vis virkelige eksempler

Awesome!

Completion rate improved to 5.26

bookAutoencoder Implementation

Stryg for at vise menuen

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 3
some-alt