Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Plot Labels and Title | Basics: Line Charts
Visualization in Python with matplotlib
course content

Course Content

Visualization in Python with matplotlib

Visualization in Python with matplotlib

1. Basics: Line Charts
2. Bar Charts
3. Scatter Plots

bookPlot Labels and Title

Great! Let's continue improving our plot with some customizing stuff.

Couple more things we can add to our charts are custom labels on the axis and title for the entire plot. To add labels, use .set_xlabel('text') and .set_ylabel('text') functions applied to Axes object to set custom ('text') labels on the x-axes or y-axes, respectively.

To set the plot title use the .title('text') method applied to matplotlib.pyplot (usually imported as plt). For example, let's add axes labels and title to the example plot we've built.

1234567891011121314151617181920212223242526
# Import the libraries import matplotlib.pyplot as plt import pandas as pd # Load the data data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/ed80401e-2684-4bc4-a077-99d13a386ac7/co2.csv', index_col = 0) # Filter the data ita = data.loc['Italy'] swe = data.loc['Sweden'] # Create Figure and Axes objects fig, ax = plt.subplots() # Initialize lines ax.plot(ita.index.astype(int), ita.values, label = 'Italy') ax.plot(swe.index.astype(int), swe.values, label = 'Sweden') # Add axis labels ax.set_xlabel('Year') ax.set_ylabel('CO2 emission level (tonnes per person)') # Display the legend, title, and plot plt.legend() plt.title('CO2 Emission Levels in Italy and Sweden') plt.show()
copy

Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 1. Chapter 8
some-alt