Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Challenge: TF-IDF | Basic Text Models
Introduction to NLP

Swipe to show menu

book
Challenge: TF-IDF

Task

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 8
single

single

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

close

Awesome!

Completion rate improved to 3.45

book
Challenge: TF-IDF

Task

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

close

Awesome!

Completion rate improved to 3.45

Swipe to show menu

some-alt