Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Encoding Categorical Variables | Preprocessing Data with Scikit-learn
ML Introduction with scikit-learn
course content

Course Content

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

book
Challenge: Encoding Categorical Variables

To summarize the previous three chapters, here is a table showing what encoder you should use:

In this challenge, you have the penguins dataset file (with no missing values). You need to deal with all the categorical values, including the target ('species' column).

Here is the reminder of the data you will work with:

12345
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed.csv') print(df.head())
copy

Keep in mind that 'island' and 'sex' are categorical features and 'species' is a categorical target.

Task
test

Swipe to show code editor

Encode all the categorical values. For this, you need to choose the correct encoder for the 'island', and 'sex' columns and follow the steps.

  1. Import the correct encoders for features and target.
  2. Initialize the features encoder object.
  3. Encode the categorical feature columns using the feature_enc object.
  4. Initialize the target encoder object.
  5. Encode the target using the label_enc object.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 2. Chapter 8
toggle bottom row

book
Challenge: Encoding Categorical Variables

To summarize the previous three chapters, here is a table showing what encoder you should use:

In this challenge, you have the penguins dataset file (with no missing values). You need to deal with all the categorical values, including the target ('species' column).

Here is the reminder of the data you will work with:

12345
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed.csv') print(df.head())
copy

Keep in mind that 'island' and 'sex' are categorical features and 'species' is a categorical target.

Task
test

Swipe to show code editor

Encode all the categorical values. For this, you need to choose the correct encoder for the 'island', and 'sex' columns and follow the steps.

  1. Import the correct encoders for features and target.
  2. Initialize the features encoder object.
  3. Encode the categorical feature columns using the feature_enc object.
  4. Initialize the target encoder object.
  5. Encode the target using the label_enc object.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 2. Chapter 8
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
We're sorry to hear that something went wrong. What happened?
some-alt