Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Unique Values | Analyzing the Data
Pandas First Steps
course content

Course Content

Pandas First Steps

Pandas First Steps

1. The Very First Steps
2. Reading Files in Pandas
3. Analyzing the Data

book
Unique Values

Data often gets duplicated in DataFrames. For instance, in the countries DataFrame, the 'continent' column has repeated entries. There's a method that retrieves an array of distinct values from a specific DataFrame column.

1234567
import pandas as pd country_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(country_data) print(countries)
copy

Now, we'll apply the unique() method to the 'continent' and 'country' columns:

12345678910
import pandas as pd country_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(country_data) unique_countries = countries['country'].unique() unique_continents = countries['continent'].unique() print(unique_countries) print(unique_continents)
copy

To count the number of distinct values in a specific column, you can use the nunique() method:

1234567
import pandas as pd country_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(country_data) print(countries['continent'].nunique())
copy
Task
test

Swipe to begin your solution

Given the audi_cars DataFrame:

  1. Identify all distinct values in the 'year' and 'fueltype' columns.
  2. Determine the number of unique fuel types.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 3. Chapter 15
toggle bottom row

book
Unique Values

Data often gets duplicated in DataFrames. For instance, in the countries DataFrame, the 'continent' column has repeated entries. There's a method that retrieves an array of distinct values from a specific DataFrame column.

1234567
import pandas as pd country_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(country_data) print(countries)
copy

Now, we'll apply the unique() method to the 'continent' and 'country' columns:

12345678910
import pandas as pd country_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(country_data) unique_countries = countries['country'].unique() unique_continents = countries['continent'].unique() print(unique_countries) print(unique_continents)
copy

To count the number of distinct values in a specific column, you can use the nunique() method:

1234567
import pandas as pd country_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(country_data) print(countries['continent'].nunique())
copy
Task
test

Swipe to begin your solution

Given the audi_cars DataFrame:

  1. Identify all distinct values in the 'year' and 'fueltype' columns.
  2. Determine the number of unique fuel types.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 3. Chapter 15
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
We're sorry to hear that something went wrong. What happened?
some-alt