Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Unique Values | Analyzing the Data
Pandas First Steps
course content

Course Content

Pandas First Steps

Pandas First Steps

1. The Very First Steps
2. Reading Files in Pandas
3. Analyzing the Data

bookUnique Values

Data often gets duplicated in DataFrames. For instance, in our countries DataFrame, the continent column has repeated entries. There's a function that retrieves an array of distinct values from a specific DataFrame column. Let's revisit this DataFrame.

1234567
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
copy

Now, let's apply the unique() method to the 'continent' and 'country' columns.

12345678910
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) unique_countries = countries['country'].unique() unique_continents = countries['continent'].unique() print(unique_countries) print(unique_continents)
copy

Task

Given the audi_cars DataFrame, please identify all distinct values in the 'year' and 'fueltype' columns.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 3. Chapter 16
toggle bottom row

bookUnique Values

Data often gets duplicated in DataFrames. For instance, in our countries DataFrame, the continent column has repeated entries. There's a function that retrieves an array of distinct values from a specific DataFrame column. Let's revisit this DataFrame.

1234567
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
copy

Now, let's apply the unique() method to the 'continent' and 'country' columns.

12345678910
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) unique_countries = countries['country'].unique() unique_continents = countries['continent'].unique() print(unique_countries) print(unique_continents)
copy

Task

Given the audi_cars DataFrame, please identify all distinct values in the 'year' and 'fueltype' columns.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 3. Chapter 16
toggle bottom row

bookUnique Values

Data often gets duplicated in DataFrames. For instance, in our countries DataFrame, the continent column has repeated entries. There's a function that retrieves an array of distinct values from a specific DataFrame column. Let's revisit this DataFrame.

1234567
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
copy

Now, let's apply the unique() method to the 'continent' and 'country' columns.

12345678910
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) unique_countries = countries['country'].unique() unique_continents = countries['continent'].unique() print(unique_countries) print(unique_continents)
copy

Task

Given the audi_cars DataFrame, please identify all distinct values in the 'year' and 'fueltype' columns.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Data often gets duplicated in DataFrames. For instance, in our countries DataFrame, the continent column has repeated entries. There's a function that retrieves an array of distinct values from a specific DataFrame column. Let's revisit this DataFrame.

1234567
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
copy

Now, let's apply the unique() method to the 'continent' and 'country' columns.

12345678910
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) unique_countries = countries['country'].unique() unique_continents = countries['continent'].unique() print(unique_countries) print(unique_continents)
copy

Task

Given the audi_cars DataFrame, please identify all distinct values in the 'year' and 'fueltype' columns.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Section 3. Chapter 16
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
some-alt