Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Removing Missing Values | Processing Quantitative Data
Data Preprocessing
course content

Course Content

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

book
Removing Missing Values

Removing missing values from datasets is an important step in ensuring data analysis and modeling quality and accuracy. It helps to avoid issues with incomplete data, skewed results, poor model performance, and data integrity. But it is important to carefully consider the implications of removing missing values and to choose an appropriate method for handling them, such as imputation or removal, depending on the specific situation.

To remove missing values in Python, you can use the .dropna(), method of the pandas library. This function removes any rows or columns that contain missing values in a dataset.

Here's an example:

12345678910
import pandas as pd import numpy as np # Load dataset dataset = pd.DataFrame(np.array([[10, 2, np.nan], [5, 0.3, 9], [np.nan, 12, 8], [11, 12, 8]])) print('Dataset is:\n', dataset) # Drop rows with missing values dataset = dataset.dropna() print('Cleaned dataset is:\n', dataset)
copy

It's important to note that removing missing values can result in a loss of information, so it's important to consider the implications of removing them before doing so. In some cases, it may be appropriate to impute missing values instead of removing them.

Also, we want to remind you that replacing missing values with mean values can be used for handling missing data in Python. It is typically used when the missing data is missing at random (MAR), which means that the missing values are not related to the actual value of the missing data.

Task
test

Swipe to show code editor

Remove the missing values in the 'titanic.csv' dataset.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 2. Chapter 4
toggle bottom row

book
Removing Missing Values

Removing missing values from datasets is an important step in ensuring data analysis and modeling quality and accuracy. It helps to avoid issues with incomplete data, skewed results, poor model performance, and data integrity. But it is important to carefully consider the implications of removing missing values and to choose an appropriate method for handling them, such as imputation or removal, depending on the specific situation.

To remove missing values in Python, you can use the .dropna(), method of the pandas library. This function removes any rows or columns that contain missing values in a dataset.

Here's an example:

12345678910
import pandas as pd import numpy as np # Load dataset dataset = pd.DataFrame(np.array([[10, 2, np.nan], [5, 0.3, 9], [np.nan, 12, 8], [11, 12, 8]])) print('Dataset is:\n', dataset) # Drop rows with missing values dataset = dataset.dropna() print('Cleaned dataset is:\n', dataset)
copy

It's important to note that removing missing values can result in a loss of information, so it's important to consider the implications of removing them before doing so. In some cases, it may be appropriate to impute missing values instead of removing them.

Also, we want to remind you that replacing missing values with mean values can be used for handling missing data in Python. It is typically used when the missing data is missing at random (MAR), which means that the missing values are not related to the actual value of the missing data.

Task
test

Swipe to show code editor

Remove the missing values in the 'titanic.csv' dataset.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 2. Chapter 4
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
We're sorry to hear that something went wrong. What happened?
some-alt