Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge | Stationary Models
Time Series Analysis
course content

Course Content

Time Series Analysis

Time Series Analysis

1. Time Series: Let's Start
2. Time Series Processing
3. Time Series Visualization
4. Stationary Models
5. Non-Stationary Models
6. Solve Real Problems

bookChallenge

Task

Create an autoregressive model to predict the dataset aapl.csv. After, print the results and the model error.

  1. Read the aapl.csv dataset.
  2. Create an autoregressive model (AutoReg) with 3 lags for the X data and assign it to the model variable.
  3. Fit model to the data and assign it to the model_fit variable.
  4. Predict the first 30 values.
  5. Visualize the results: display the first 30 values of X within the first call of the print() function, and first 30 values of the predictions within the second call.
  6. Calculate the RMSE (square root of the mean squared error) and display it.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 4. Chapter 5
toggle bottom row

bookChallenge

Task

Create an autoregressive model to predict the dataset aapl.csv. After, print the results and the model error.

  1. Read the aapl.csv dataset.
  2. Create an autoregressive model (AutoReg) with 3 lags for the X data and assign it to the model variable.
  3. Fit model to the data and assign it to the model_fit variable.
  4. Predict the first 30 values.
  5. Visualize the results: display the first 30 values of X within the first call of the print() function, and first 30 values of the predictions within the second call.
  6. Calculate the RMSE (square root of the mean squared error) and display it.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 4. Chapter 5
toggle bottom row

bookChallenge

Task

Create an autoregressive model to predict the dataset aapl.csv. After, print the results and the model error.

  1. Read the aapl.csv dataset.
  2. Create an autoregressive model (AutoReg) with 3 lags for the X data and assign it to the model variable.
  3. Fit model to the data and assign it to the model_fit variable.
  4. Predict the first 30 values.
  5. Visualize the results: display the first 30 values of X within the first call of the print() function, and first 30 values of the predictions within the second call.
  6. Calculate the RMSE (square root of the mean squared error) and display it.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Task

Create an autoregressive model to predict the dataset aapl.csv. After, print the results and the model error.

  1. Read the aapl.csv dataset.
  2. Create an autoregressive model (AutoReg) with 3 lags for the X data and assign it to the model variable.
  3. Fit model to the data and assign it to the model_fit variable.
  4. Predict the first 30 values.
  5. Visualize the results: display the first 30 values of X within the first call of the print() function, and first 30 values of the predictions within the second call.
  6. Calculate the RMSE (square root of the mean squared error) and display it.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Section 4. Chapter 5
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
some-alt