Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Challenge: Solving Task Using Stacking Classifier | Commonly Used Stacking Models
Ensemble Learning

Swipe to show menu

book
Challenge: Solving Task Using Stacking Classifier

Task

Swipe to start coding

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center' dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 4. ChapterΒ 2

Ask AI

expand
ChatGPT

Ask anything or try one of the suggested questions to begin our chat

book
Challenge: Solving Task Using Stacking Classifier

Task

Swipe to start coding

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center' dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 4. ChapterΒ 2
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
We're sorry to hear that something went wrong. What happened?
some-alt