Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn The `iloc` Property | Fetching Data from DataFrames
Pandas: First Steps
course content

Course Content

Pandas: First Steps

Pandas: First Steps

1. Getting Started
2. Basics of Dataframes
3. Fetching Data from DataFrames

book
The `iloc` Property

The iloc property in Pandas allows us to access specific parts of a DataFrame using numerical positions.

You can use iloc to access:

  • A single element;

  • A single row;

  • A single column;

  • A range of rows;

  • A range of columns;

  • A range of rows and columns.

General Syntax

js

You can also slice:

python

Example

12345678910111213141516171819202122232425
import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
copy
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 10

Ask AI

expand
ChatGPT

Ask anything or try one of the suggested questions to begin our chat

course content

Course Content

Pandas: First Steps

Pandas: First Steps

1. Getting Started
2. Basics of Dataframes
3. Fetching Data from DataFrames

book
The `iloc` Property

The iloc property in Pandas allows us to access specific parts of a DataFrame using numerical positions.

You can use iloc to access:

  • A single element;

  • A single row;

  • A single column;

  • A range of rows;

  • A range of columns;

  • A range of rows and columns.

General Syntax

js

You can also slice:

python

Example

12345678910111213141516171819202122232425
import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
copy
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 10
We're sorry to hear that something went wrong. What happened?
some-alt