Implementing Identity-Quadratic Functions in Python
Identity Function
The identity function returns the input value unchanged, following the form f(x)=x. In Python, we implement it as:
# Identity Function
def identity_function(x):
return x
The identity function returns the input value unchanged, following the form f(x)=x. To visualize it, we generate x-values from -10 to 10, plot the line, mark the origin (0,0), and include labeled axes and grid lines for clarity.
12345678910111213141516171819202122232425import numpy as np import matplotlib.pyplot as plt # Identity Function def identity_function(x): return x x = np.linspace(-10, 10, 100) y = identity_function(x) plt.plot(x, y, label="f(x) = x", color='blue', linewidth=2) plt.scatter(0, 0, color='red', zorder=5) # Mark the origin # Add axes plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) # Add labels plt.xlabel("x") plt.ylabel("f(x)") # Add grid plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Identity Function: f(x) = x") plt.show()
Constant Function
A constant function always returns the same output, regardless of the input. It follows f(x)=c.
# Constant Function
def constant_function(x, c):
return np.full_like(x, c)
A constant function always returns the same output, regardless of the input, following the form f(x)=c. To visualize it, we generate x-values from -10 to 10 and plot a horizontal line at y=5. The plot includes axes, labels, and a grid for clarity.
123456789101112131415161718import numpy as np import matplotlib.pyplot as plt def constant_function(x, c): return np.full_like(x, c) x = np.linspace(-10, 10, 100) y = constant_function(x, c=5) plt.plot(x, y, label="f(x) = 5", color='blue', linewidth=2) plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) plt.xlabel("x") plt.ylabel("f(x)") plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Constant Function: f(x) = 5") plt.show()
Linear Function
A linear function follows the form f(x)=mx+b, where m represents the slope and b the y-intercept.
# Linear Function
def linear_function(x, m, b):
return m * x + b
A linear function follows the form f(x)=mx+b, where m is the slope and b is the y-intercept. We generate x-values from -20 to 20 and plot the function with both axes, a grid, and marked intercepts.
1234567891011121314151617181920import numpy as np import matplotlib.pyplot as plt def linear_function(x, m, b): return m * x + b x = np.linspace(-20, 20, 400) y = linear_function(x, m=2, b=-5) plt.plot(x, y, color='blue', linewidth=2, label="f(x) = 2x - 5") plt.scatter(0, -5, color='red', label="Y-Intercept") plt.scatter(2.5, 0, color='green', label="X-Intercept") plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) plt.xlabel("x") plt.ylabel("f(x)") plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Linear Function: f(x) = 2x - 5") plt.show()
Quadratic Function
A quadratic function follows f(x)=ax2+bx+c, creating a parabolic curve. Key features include the vertex and x-intercepts.
# Quadratic Function
def quadratic_function(x):
return x**2 - 4*x - 2
A quadratic function follows f(x)=ax2+bx+c, forming a parabolic curve. We generate x-values from -2 to 6, plot the function, and mark the vertex and intercepts. The plot includes both axes, a grid, and labels.
12345678910111213141516171819202122232425import numpy as np import matplotlib.pyplot as plt def quadratic_function(x): return x**2 - 4*x - 2 x = np.linspace(-2, 6, 200) y = quadratic_function(x) plt.plot(x, y, color='blue', linewidth=2, label="f(x) = xΒ² - 4x - 2") plt.scatter(2, quadratic_function(2), color='red', label="Vertex (2, -6)") plt.scatter(0, quadratic_function(0), color='green', label="Y-Intercept (0, -2)") # X-intercepts from quadratic formula x1, x2 = (4 + np.sqrt(24)) / 2, (4 - np.sqrt(24)) / 2 plt.scatter([x1, x2], [0, 0], color='orange', label="X-Intercepts") plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) plt.xlabel("x") plt.ylabel("f(x)") plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Quadratic Function: f(x) = xΒ² - 4x - 2") plt.show()
Thanks for your feedback!
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Awesome!
Completion rate improved to 1.96
Implementing Identity-Quadratic Functions in Python
Swipe to show menu
Identity Function
The identity function returns the input value unchanged, following the form f(x)=x. In Python, we implement it as:
# Identity Function
def identity_function(x):
return x
The identity function returns the input value unchanged, following the form f(x)=x. To visualize it, we generate x-values from -10 to 10, plot the line, mark the origin (0,0), and include labeled axes and grid lines for clarity.
12345678910111213141516171819202122232425import numpy as np import matplotlib.pyplot as plt # Identity Function def identity_function(x): return x x = np.linspace(-10, 10, 100) y = identity_function(x) plt.plot(x, y, label="f(x) = x", color='blue', linewidth=2) plt.scatter(0, 0, color='red', zorder=5) # Mark the origin # Add axes plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) # Add labels plt.xlabel("x") plt.ylabel("f(x)") # Add grid plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Identity Function: f(x) = x") plt.show()
Constant Function
A constant function always returns the same output, regardless of the input. It follows f(x)=c.
# Constant Function
def constant_function(x, c):
return np.full_like(x, c)
A constant function always returns the same output, regardless of the input, following the form f(x)=c. To visualize it, we generate x-values from -10 to 10 and plot a horizontal line at y=5. The plot includes axes, labels, and a grid for clarity.
123456789101112131415161718import numpy as np import matplotlib.pyplot as plt def constant_function(x, c): return np.full_like(x, c) x = np.linspace(-10, 10, 100) y = constant_function(x, c=5) plt.plot(x, y, label="f(x) = 5", color='blue', linewidth=2) plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) plt.xlabel("x") plt.ylabel("f(x)") plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Constant Function: f(x) = 5") plt.show()
Linear Function
A linear function follows the form f(x)=mx+b, where m represents the slope and b the y-intercept.
# Linear Function
def linear_function(x, m, b):
return m * x + b
A linear function follows the form f(x)=mx+b, where m is the slope and b is the y-intercept. We generate x-values from -20 to 20 and plot the function with both axes, a grid, and marked intercepts.
1234567891011121314151617181920import numpy as np import matplotlib.pyplot as plt def linear_function(x, m, b): return m * x + b x = np.linspace(-20, 20, 400) y = linear_function(x, m=2, b=-5) plt.plot(x, y, color='blue', linewidth=2, label="f(x) = 2x - 5") plt.scatter(0, -5, color='red', label="Y-Intercept") plt.scatter(2.5, 0, color='green', label="X-Intercept") plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) plt.xlabel("x") plt.ylabel("f(x)") plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Linear Function: f(x) = 2x - 5") plt.show()
Quadratic Function
A quadratic function follows f(x)=ax2+bx+c, creating a parabolic curve. Key features include the vertex and x-intercepts.
# Quadratic Function
def quadratic_function(x):
return x**2 - 4*x - 2
A quadratic function follows f(x)=ax2+bx+c, forming a parabolic curve. We generate x-values from -2 to 6, plot the function, and mark the vertex and intercepts. The plot includes both axes, a grid, and labels.
12345678910111213141516171819202122232425import numpy as np import matplotlib.pyplot as plt def quadratic_function(x): return x**2 - 4*x - 2 x = np.linspace(-2, 6, 200) y = quadratic_function(x) plt.plot(x, y, color='blue', linewidth=2, label="f(x) = xΒ² - 4x - 2") plt.scatter(2, quadratic_function(2), color='red', label="Vertex (2, -6)") plt.scatter(0, quadratic_function(0), color='green', label="Y-Intercept (0, -2)") # X-intercepts from quadratic formula x1, x2 = (4 + np.sqrt(24)) / 2, (4 - np.sqrt(24)) / 2 plt.scatter([x1, x2], [0, 0], color='orange', label="X-Intercepts") plt.axhline(0, color='black', linewidth=1) plt.axvline(0, color='black', linewidth=1) plt.xlabel("x") plt.ylabel("f(x)") plt.grid(True, linestyle='--', alpha=0.6) plt.legend() plt.title("Quadratic Function: f(x) = xΒ² - 4x - 2") plt.show()
Thanks for your feedback!