Implementing Probability Basics in Python
Defining Sample Space and Events
# Small numbers on a die
A = {1, 2, 3}
# Even numbers on a die
B = {2, 4, 6}
die_outcomes = 6
Here we define:
- A={1,2,3} representing "small" outcomes;
- B={2,4,6} representing "even" outcomes.
The total number of die outcomes is 6.
Performing Set Operations
12345678# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 print(f'A and B = {A & B}') # {2} print(f'A or B = {A | B}') # {1, 2, 3, 4, 6}
- The intersection Aβ©B={2} β common element.
- The union AβͺB={1,2,3,4,6} β all elements in A or B.
Calculating Probabilities
123456789101112131415161718# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 A_and_B = A & B # {2} A_or_B = A | B # {1, 2, 3, 4, 6} P_A = len(A) / die_outcomes P_B = len(B) / die_outcomes P_A_and_B = len(A_and_B) / die_outcomes P_A_or_B = P_A + P_B - P_A_and_B print("P(A) =", P_A) print("P(B) =", P_B) print("P(A β© B) =", P_A_and_B) print("P(A βͺ B) =", P_A_or_B)
We use the formulas:
- P(A)=6ββ£Aβ£ββ=6β3β;
- P(B)=6ββ£Bβ£ββ=6β3β;
- P(Aβ©B)=6ββ£Aβ©Bβ£ββ=6β1β;
- P(AβͺB)=P(A)+P(B)βP(Aβ©B)=6β5β.
Additional Set Details
12345only_A = A - B # {1, 3} only_B = B - A # {4, 6} print(only_A) print(only_B)
- Elements only in A: {1, 3};
- Elements only in B: {4, 6}.
Everything was clear?
Thanks for your feedback!
SectionΒ 5. ChapterΒ 2
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Awesome!
Completion rate improved to 1.96
Implementing Probability Basics in Python
Swipe to show menu
Defining Sample Space and Events
# Small numbers on a die
A = {1, 2, 3}
# Even numbers on a die
B = {2, 4, 6}
die_outcomes = 6
Here we define:
- A={1,2,3} representing "small" outcomes;
- B={2,4,6} representing "even" outcomes.
The total number of die outcomes is 6.
Performing Set Operations
12345678# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 print(f'A and B = {A & B}') # {2} print(f'A or B = {A | B}') # {1, 2, 3, 4, 6}
- The intersection Aβ©B={2} β common element.
- The union AβͺB={1,2,3,4,6} β all elements in A or B.
Calculating Probabilities
123456789101112131415161718# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 A_and_B = A & B # {2} A_or_B = A | B # {1, 2, 3, 4, 6} P_A = len(A) / die_outcomes P_B = len(B) / die_outcomes P_A_and_B = len(A_and_B) / die_outcomes P_A_or_B = P_A + P_B - P_A_and_B print("P(A) =", P_A) print("P(B) =", P_B) print("P(A β© B) =", P_A_and_B) print("P(A βͺ B) =", P_A_or_B)
We use the formulas:
- P(A)=6ββ£Aβ£ββ=6β3β;
- P(B)=6ββ£Bβ£ββ=6β3β;
- P(Aβ©B)=6ββ£Aβ©Bβ£ββ=6β1β;
- P(AβͺB)=P(A)+P(B)βP(Aβ©B)=6β5β.
Additional Set Details
12345only_A = A - B # {1, 3} only_B = B - A # {4, 6} print(only_A) print(only_B)
- Elements only in A: {1, 3};
- Elements only in B: {4, 6}.
Everything was clear?
Thanks for your feedback!
SectionΒ 5. ChapterΒ 2