Challenge: Grid Search
Task
Swipe to start coding
In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.
You'll use a noisy two-class dataset generated with make_moons.
Your task is to:
- Define the parameter grid
param_grid:'n_estimators':[50, 100, 200]'max_depth':[3, 5, None]'min_samples_split':[2, 4]
- Create a
GridSearchCVobject using:- The model:
RandomForestClassifier(random_state=42) - The defined grid
param_grid cv=5cross-validation folds'accuracy'as the scoring metric
- The model:
- Fit the search object on the training data and print:
grid_search.best_params_- The test accuracy of the best model.
Solution
Everything was clear?
Thanks for your feedback!
SectionΒ 2. ChapterΒ 4
single
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Suggested prompts:
Can you explain this in simpler terms?
What are the main takeaways from this?
Can you give me an example?
Awesome!
Completion rate improved to 9.09
Challenge: Grid Search
Swipe to show menu
Task
Swipe to start coding
In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.
You'll use a noisy two-class dataset generated with make_moons.
Your task is to:
- Define the parameter grid
param_grid:'n_estimators':[50, 100, 200]'max_depth':[3, 5, None]'min_samples_split':[2, 4]
- Create a
GridSearchCVobject using:- The model:
RandomForestClassifier(random_state=42) - The defined grid
param_grid cv=5cross-validation folds'accuracy'as the scoring metric
- The model:
- Fit the search object on the training data and print:
grid_search.best_params_- The test accuracy of the best model.
Solution
Everything was clear?
Thanks for your feedback!
SectionΒ 2. ChapterΒ 4
single