Course Content
Deep Dive into the seaborn Visualization
Deep Dive into the seaborn Visualization
FacetGrid
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.
Task
- Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. - Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.
Thanks for your feedback!
FacetGrid
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.
Task
- Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. - Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.
Thanks for your feedback!
FacetGrid
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.
Task
- Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. - Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.
Thanks for your feedback!
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.
Task
- Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. - Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.