Problem D. Coin Change
Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N]
is equal to dp[N-C]
. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1]
cents, so number of possible combinations is:
dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]
Note that value of N-c[i]
must be non-negative. Let's use tabulation: for values j
from coin
up to N
: update dp[j]
with adding dp[j-coin]
; repeat for each coin
.
12345678910def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
Thanks for your feedback!
single
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Awesome!
Completion rate improved to 8.33
Problem D. Coin Change
Swipe to show menu
Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N]
is equal to dp[N-C]
. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1]
cents, so number of possible combinations is:
dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]
Note that value of N-c[i]
must be non-negative. Let's use tabulation: for values j
from coin
up to N
: update dp[j]
with adding dp[j-coin]
; repeat for each coin
.
12345678910def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
Thanks for your feedback!
Awesome!
Completion rate improved to 8.33single