Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Challenge: Pipe Your Data Manipulation | Pipes and Chaining Operations
Data Manipulation in R (Core)

bookChallenge: Pipe Your Data Manipulation

In analytics, you often need to perform several data manipulation steps in sequenceβ€”such as selecting columns, filtering rows, creating new variables, and arranging results. Rather than writing separate commands, you can use the pipe operator '%>%' to chain these operations together, making your code cleaner and easier to follow. This approach is especially useful when cleaning and preparing data for analysis, as it allows you to express a series of transformations as a single, readable pipeline. Now, you will practice chaining multiple dplyr verbs using pipes to achieve a real-world data cleaning task.

Task

Swipe to start coding

You are given an orders data frame containing order information. Your goal is to clean this data using a single pipeline with pipes and dplyr verbs.

  • Select only the columns order_id, customer, amount, and status.
  • Filter for orders where status is "Completed" and amount is greater than 100.
  • Create a new column amount_usd by multiplying amount by 1.1.
  • Arrange the resulting data in descending order of amount_usd.

Assign your final data frame to cleaned_orders.

Solution

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 2. ChapterΒ 2
single

single

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

close

bookChallenge: Pipe Your Data Manipulation

Swipe to show menu

In analytics, you often need to perform several data manipulation steps in sequenceβ€”such as selecting columns, filtering rows, creating new variables, and arranging results. Rather than writing separate commands, you can use the pipe operator '%>%' to chain these operations together, making your code cleaner and easier to follow. This approach is especially useful when cleaning and preparing data for analysis, as it allows you to express a series of transformations as a single, readable pipeline. Now, you will practice chaining multiple dplyr verbs using pipes to achieve a real-world data cleaning task.

Task

Swipe to start coding

You are given an orders data frame containing order information. Your goal is to clean this data using a single pipeline with pipes and dplyr verbs.

  • Select only the columns order_id, customer, amount, and status.
  • Filter for orders where status is "Completed" and amount is greater than 100.
  • Create a new column amount_usd by multiplying amount by 1.1.
  • Arrange the resulting data in descending order of amount_usd.

Assign your final data frame to cleaned_orders.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 2. ChapterΒ 2
single

single

some-alt