Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Replace Categorical Missing Data with Values | Data Cleaning
Preprocessing Data
course content

Course Content

Preprocessing Data

Preprocessing Data

1. Data Exploration
2. Data Cleaning
3. Data Validation
4. Normalization & Standardization
5. Data Encoding

bookReplace Categorical Missing Data with Values

To deal with categorical data:

  • replace with some constant or the most popular value
  • create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.

Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.

Task

  1. Explore the share of NaNs for each of the given columns. Print these values.
  2. For Embarked column, simply drop the missing values, since there are only 2 rows containing it.
  3. For the Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that:
  • print all the unique values for the Cabin column.
  • choose any other vlaue except already presented in the Cabin column and replace all NaNs with it. (For example, it can be 'Z' or 'X').

Check some data samples to see the modified dataframe.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 2. Chapter 5
toggle bottom row

bookReplace Categorical Missing Data with Values

To deal with categorical data:

  • replace with some constant or the most popular value
  • create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.

Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.

Task

  1. Explore the share of NaNs for each of the given columns. Print these values.
  2. For Embarked column, simply drop the missing values, since there are only 2 rows containing it.
  3. For the Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that:
  • print all the unique values for the Cabin column.
  • choose any other vlaue except already presented in the Cabin column and replace all NaNs with it. (For example, it can be 'Z' or 'X').

Check some data samples to see the modified dataframe.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 2. Chapter 5
toggle bottom row

bookReplace Categorical Missing Data with Values

To deal with categorical data:

  • replace with some constant or the most popular value
  • create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.

Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.

Task

  1. Explore the share of NaNs for each of the given columns. Print these values.
  2. For Embarked column, simply drop the missing values, since there are only 2 rows containing it.
  3. For the Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that:
  • print all the unique values for the Cabin column.
  • choose any other vlaue except already presented in the Cabin column and replace all NaNs with it. (For example, it can be 'Z' or 'X').

Check some data samples to see the modified dataframe.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

To deal with categorical data:

  • replace with some constant or the most popular value
  • create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.

Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.

Task

  1. Explore the share of NaNs for each of the given columns. Print these values.
  2. For Embarked column, simply drop the missing values, since there are only 2 rows containing it.
  3. For the Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that:
  • print all the unique values for the Cabin column.
  • choose any other vlaue except already presented in the Cabin column and replace all NaNs with it. (For example, it can be 'Z' or 'X').

Check some data samples to see the modified dataframe.

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Section 2. Chapter 5
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
some-alt