Missing and Wrong Data
As you already know, it is possible that raw data can contain some dirty data. It can be:
- NaN: undefined or missing data.
- empty strings.
- infinite: very large data.
- incorrect data: for example, 'Female' in the Price column, that contains numeric data (this value could be stored into the wrong cell accidentally). You may find impossible values of the user's age, for example, if this value should be entered by him manually (like -1, 110, 0, etc.).
- outliers: critically small or big values(for example, 250 cm in the Height column, or 112 yrs in the Age column), usually in a small amount. They may affect your result of analysis or model weights, so sometimes it makes sense to remove them.
Let's learn how to 'clean' your data and not to lose some useful info.
Everything was clear?
Thanks for your feedback!
SectionΒ 2. ChapterΒ 1
single
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Suggested prompts:
Summarize this chapter
Explain the code in file
Explain why file doesn't solve the task
Awesome!
Completion rate improved to 5.56
Missing and Wrong Data
Swipe to show menu
As you already know, it is possible that raw data can contain some dirty data. It can be:
- NaN: undefined or missing data.
- empty strings.
- infinite: very large data.
- incorrect data: for example, 'Female' in the Price column, that contains numeric data (this value could be stored into the wrong cell accidentally). You may find impossible values of the user's age, for example, if this value should be entered by him manually (like -1, 110, 0, etc.).
- outliers: critically small or big values(for example, 250 cm in the Height column, or 112 yrs in the Age column), usually in a small amount. They may affect your result of analysis or model weights, so sometimes it makes sense to remove them.
Let's learn how to 'clean' your data and not to lose some useful info.
Everything was clear?
Thanks for your feedback!
Awesome!
Completion rate improved to 5.56SectionΒ 2. ChapterΒ 1
single